topic badge

9.01 Integrating exponential functions

Lesson

The integral of $e^x$ex and $e^{ax+b}$eax+b

We established the following results when differentiating exponential functions:

Standard forms for differentiating exponential functions
$\frac{d}{dx}e^x$ddx​ex $=$= $e^x$ex
$\frac{d}{dx}e^{ax}$ddx​eax $=$= $ae^{ax}$aeax

Reversing these we get these results for integrating exponential functions:

Standard forms for integration

$\int e^xdx=e^x+C$∫exdx=ex+C, for some constant $C$C

$\int e^{ax+b}dx=\frac{1}{a}e^{ax+b}+C$∫eax+bdx=1a​eax+b+C, for some constant $C$C

Worked examples

Example 1

Find the indefinite integral $\int e^{2-7x}dx.$∫e2−7xdx.

Solution:

$\int e^{2-7x}dx=\frac{-1}{7}e^{2-7x}+C$∫e2−7xdx=−17​e2−7x+C

Example 2

Find the definite integral $\int_0^25e^xdx$∫20​5exdx.

Solution:

$\int_0^25e^xdx$∫20​5exdx $=$= $5[e^x]_0^2$5[ex]20​
  $=$= $5(e^2-e^0)$5(e2−e0)
  $=$= $5(e^2-1)$5(e2−1)

 

Other examples

Here is a table listing a few results found by using this rule:

$f'(x)$f′(x) $f(x)$f(x)
$e^{-4x}$e−4x $-\frac{1}{4}e^{-4x}+C$−14​e−4x+C
$6e^{2-3x}$6e2−3x $-2e^{2-3x}+C$−2e2−3x+C
$\frac{4}{e^{2x+1}}=4e^{-\left(2x+1\right)}$4e2x+1​=4e−(2x+1) $\frac{-2}{e^{2x+1}}+C$−2e2x+1​+C
$\frac{e^x+e^{-x}}{2}$ex+e−x2​ $\frac{e^x-e^{-x}}{2}+C$ex−e−x2​+C

Practice questions

Question 1

Determine $\int4e^{1-2x}dx$∫4e1−2xdx.

You may use $C$C as a constant.

Question 2

Find the exact value of $\int_0^3\left(2e^{5x}+e^{-7x}\right)dx$∫30​(2e5x+e−7x)dx.

Question 3

Find the exact value of $\int_{\ln2}^{\ln6}\frac{e^{3x}+9}{e^x}dx$∫ln6ln2​e3x+9ex​dx.

The integral of $a^x$ax

We established the following result in an earlier chapter:

$\frac{d}{dx}a^x=\ln a\ a^x$ddx​ax=lna ax

Reversing the result we get the integral of $a^x$ax.

Integral of $a^x$ax

$\int a^xdx=\frac{1}{\ln a}a^x+C$∫axdx=1lna​ax+C

 

Worked example

Example 3

Find the indefinite integral $\int3^xdx$∫3xdx.

Solution:

$\int3^xdx=\frac{1}{\ln3}3^x+C$∫3xdx=1ln3​3x+C

Knowing how to find the indefinite and definite integral means we can find the area under a curve given the function and the boundaries.

Finding $f\left(x\right)$f(x) given $f'\left(x\right)$f′(x)

Since we know how to integrate, we can find the primitive function if we are given the derivative $f'\left(x\right)$f′(x) and at least one point that satisfies the function $f\left(x\right)$f(x). This is particularly useful in a number different contexts, for example science or business.

Worked example

Example 4

If $f'\left(x\right)=1+4e^{-x}$f′(x)=1+4e−x and $f\left(0\right)=2$f(0)=2, find $f\left(x\right)$f(x).

 

Do: Integrating $f'\left(x\right)=1+4e^{-x}$f′(x)=1+4e−x

$f\left(x\right)$f(x) $=$= $x-4e^{-x}+C$x−4e−x+C

Substituting $f\left(0\right)=2$f(0)=2:

$0-4e^0+C$0−4e0+C $=$= $2$2
$-4+C$−4+C $=$= $2$2
$C$C $=$= $6$6
$\therefore\ f\left(x\right)$∴ f(x) $=$= $x-4e^{-x}+6$x−4e−x+6

 

Anti-differentiation strategies

There are other instances where the idea of anti-differentiation can be used to established more complex results.

As a simple example, suppose we correctly determine that $\frac{\mathrm{d}}{\mathrm{d}x}e^{x^2}=2xe^{x^2}$ddx​ex2=2xex2.

Then we also know that:

$\int xe^{x^2}dx=\frac{1}{2}\int2xe^{x^2}dx=\frac{1}{2}e^{x^2}+C$∫xex2dx=12​∫2xex2dx=12​ex2+C

Slightly more difficult situations arise where integrals can be determined indirectly. In certain circumstances, a known differentiation result can be treated as an equation that can be manipulated to find an integration result. Carefully consider this next example: 

Suppose we first establish the following result using the product rule:

 $\frac{\mathrm{d}}{\mathrm{d}x}xe^x=e^x\left(x+1\right)$ddx​xex=ex(x+1)

Then we can determine the integral $\int xe^xdx$∫xexdx with the following strategy:

$\frac{\mathrm{d}}{\mathrm{d}x}xe^x$ddx​xex $=$= $e^x(x+1)$ex(x+1)
$\frac{\mathrm{d}}{\mathrm{d}x}xe^x$ddx​xex $=$= $xe^x+e^x$xex+ex
$\frac{\mathrm{d}}{\mathrm{d}x}xe^x-e^x$ddx​xex−ex $=$= $xe^x$xex
$\int\left(\frac{\mathrm{d}}{\mathrm{d}x}xe^x\right)dx-\int e^xdx$∫(ddx​xex)dx−∫exdx $=$= $\int xe^xdx$∫xexdx
$xe^x-e^x$xex−ex $=$= $\int xe^xdx$∫xexdx
$\therefore\int xe^xdx$∴∫xexdx $=$= $xe^x-e^x$xex−ex

 

Practice questions

Question 4

Consider the following.

  1. Given that $y=e^{3x}\left(x-\frac{1}{3}\right)$y=e3x(x−13​), determine $y'$y′.

    You may use the substitutions $u=e^{3x}$u=e3x and $v=\left(x-\frac{1}{3}\right)$v=(x−13​) in your working.

  2. Hence find the exact value of $\int_6^9xe^{3x}dx$∫96​xe3xdx.

Question 5

Determine the exact area bounded by the curve $y=e^{-6x}$y=e−6x, the $x$x-axis, and the lines $x=-2$x=−2 and $x=1$x=1.

Question 6

The acceleration of a particle is given by $a\left(t\right)=2e^{3t}$a(t)=2e3t m/s2, and its velocity is $10$10 m/s initially.

  1. Find its velocity $v\left(t\right)$v(t), after $t=2$t=2 seconds. Give your answer correct to the nearest metre per second.

  2. Let $x\left(t\right)$x(t) be the displacement of the particle at $t$t seconds. If its initial position is $2$2 m to the left of the origin, find its displacement after $4$4 seconds, correct to the nearest metre.

Outcomes

MA12-3

applies calculus techniques to model and solve problems

MA12-7

applies the concepts and techniques of indefinite and definite integrals in the solution of problems

What is Mathspace

About Mathspace