topic badge
AustraliaVIC
VCE 11 Methods 2023

9.01 Introduction to limits

Interactive practice questions

Consider the function $f\left(x\right)=\frac{1}{7-x}$f(x)=17x.

a

Complete the following table of values, in which $x<7$x<7.

$x$x $5$5 $6$6 $6.9$6.9 $6.99$6.99
$f\left(x\right)$f(x) $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
b

Complete the following table of values, in which $x>7$x>7.

$x$x $9$9 $8$8 $7.1$7.1 $7.01$7.01
$f\left(x\right)$f(x) $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
c

What is the limit of $f\left(x\right)$f(x) as the value of $x$x approaches $7$7?

The limit does not exist.

A

The limit is $0$0.

B

The limit is $\infty$.

C

The limit is $-\infty$.

D
Easy
3min

Consider the function $f\left(x\right)=\frac{1}{x+3}$f(x)=1x+3.

Easy
1min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

U2.AoS3.1

informal treatment of the gradient of the tangent to a curve at a point as a limit, and the limit definition of the derivative of a function

U2.AoS3.8

informal concepts of limit, continuity and differentiability

U2.AoS3.11

evaluate limit values of a function

What is Mathspace

About Mathspace