topic badge
AustraliaVIC
VCE 11 Methods 2023

7.01 Index laws

Worksheet
Product and division laws
1

Write the following using index notation: 3 \times u \times u \times u \times 5 \times v \times v \times v

2

Simplify the following:

a

2^{2} \times 2^{2}

b
2^{3} \times 2^{4}
c

4 y^{3} \times 6 y

d
c^{ 2 z} c^{z + 1}
e
3x^5 \times 8x^2
f

\left( \dfrac{7}{5} \right)^{m} \times \left( \dfrac{7}{5} \right)^{n}

g
\dfrac{3^{6}}{3^{3}}
h

\dfrac{x^{6}}{3 x^{4}}

i

\dfrac{4 n^{3} \times 4 n^{4}}{16}

j
\dfrac{10 p^{6} \times 3 p^{10}}{15 p^{2}}
k

\dfrac{u^{ 2 x + 1}}{u^{x}}

l
\dfrac{5^{ 2 x}}{5^{x + 1}}
m

p^{18} \div p^{8} \div p^{5}

n

m^{9} \div m^{5} \times m^{4}

o
\dfrac{4 j^{5} k^{9}}{4 j^{4} k^{6}}
p
\dfrac{12 a^{3x-4} b^{7}}{4 a^{2x+1} b^{6}}
3

Rewrite the following expressions without brackets:

a

\left(\dfrac{a}{b}\right)^{3}

b
(xy)^7
c
\left( 2x \right)^4
d
\left( -3x \right)^3
e

\left(\dfrac{1}{b}\right)^{3}

f

\left(\dfrac{-1}{2a}\right)^{2}

g

\left( - \dfrac{5 a}{2} \right)^{3}

h
\left( \dfrac{xy}{5z}\right)^2
i
2 x^{2} \left( 3 x^{2} + 7 x^{5}\right)
j
10 u^{2} \left( 7 u^{4} + 8 u^{3}\right)
k
6 u^{7} \left( 9 u^{7} + 9 u^{6}\right)
l
3x^{4} \left( 5 - \dfrac{4}{x^2}\right)
4

Write the following as a single power of 3:

a
81\times 3^2
b
3^x\times 3^2
c
3^{x+1}\times 3^{5x}
d
\dfrac{27}{3^{2x}}
5

Complete the statement below:

15 j^{14} \div \left(⬚\right) = 5 j^{7}

Power of a power
6

Simplify the following:

a

\left(w^{3}\right)^{4}

b

\left( 3 y^{6}\right)^{2}

c
\left(\dfrac{x^4}{2y^5}\right)^3
d

\left(u^{x + 1}\right)^{3}

e
\left(\left(x^{3}\right)^{4}\right)^{5}
f

\left( 2 y^{4}\right)^{2} \times \left( 2 y^{2}\right)^{3}

g

\dfrac{\left(x^{3}\right)^{2}}{x^{3}}

h
\dfrac{\left(k^{12}\right)^{2}}{\left(k^{4}\right)^{7}}
i

\left( 2^{3} \div 3^{2}\right)^{3}

j
\left( 6 b^{4}\right)^{5} \div \left( 3 b^{1}\right)^{2}
k
\dfrac{\left(u^{x + 3}\right)^{3}}{u^{x + 1}}
l
\left(8^{ 3 u}\right)^{\left( 4 p + 5 q\right)}
m
\dfrac{\left( n^{8} r^{5}\right)^{5}}{\left( n^{4} r\right)^{5}}
n
\left(\dfrac{- 2 x^{2} y^{6}}{z^{2}}\right)^{3}
o
\left(x^{2}\right)^{4} \div \left(\dfrac{1}{x^{3}}\right)^{3}
p
\left(t^{6}\right)^{5} \div \left(\dfrac{t^{9}}{t^{7}}\right)^{3}
q

\dfrac{3^{ 4 a + 2} \times 3^{1 + 6 a}}{\left(3^{3}\right)^{ 3 a - 1}}

r

\dfrac{81^{ 7 a - 4} \times 9^{ 3 a + 2}}{27^{3 - 3 a}}

7

Write the following as a single power of 2:

a
8^x
b
4\times 16^x
c
\left(2^{x+1}\right)^2\times 2^{3x}
d
\dfrac{32}{8^{x-1}}
8

Find the value of a and b in the following equation:

\dfrac{v^{18}}{w^{24}} = \left(\dfrac{v^a}{w^{4}}\right)^b

9

Write \left(16^{p}\right)^{4} in the form a^b, where a is a prime number.

10

Use index laws to simplify the ratio \left(0.3\right)^{a}:\left(0.3\right)^{a + 2} to a ratio of whole numbers.

11

Express 165^{m} as the product of prime bases. Leave your answer in expanded index form.

12

Find the next term in the sequence\left( 2 x^{2}\right)^{2}, \left( 2 x^{2}\right)^{3},\left( 2 x^{2}\right)^{4}, \left( 2 x^{2}\right)^{5} \ldots

Leave your answer in the form a^{m} b^{n}.

13

A computer is downloading data at a rate of 3 t^{3} bytes per second. If it downloads 6 \left(t^{3}\right)^{5} bytes, find an expression for the number of seconds the download took. Leave your answer in simplest index form.

Negative indices and the zero index
14

Write the following as rational numbers in simplest form:

a
3^{ - 1 }
b
3^{ - 2 } \div 3^{3}
c
\left(\dfrac{1}{4}\right)^{ - 3 }
d
\left(\dfrac{5}{3}\right)^{ - 2 }
15

Write the following as a single power of 2:

a
8^{-1}
b
\dfrac{1}{4}
c
2\left(\dfrac{1}{2^x}\right)^{ - 3 }
d
\dfrac{4^m}{2^{-m}}
16

Simplify the following, giving your answers with a positive index:

a

m^{2} \times m^{ - 7 }

b
3 x^{ - 2 }
c

\left( 4 m^{ - 10 }\right)^{4}

d

\left( 4 m^{ - 8 }\right)^{ - 3 }

e

\dfrac{12 x^{3}}{4 x^{7}}

f

\left(\dfrac{2 h}{3}\right)^{ - 4 }

g
\left(5^{2}\right)^{ - p }
h
m^{ - 5 } n^{ - 4 } p^{4}
i
2 p^{5} q^{ - 7 } \times 6 p^{ - 9 } q^{9}
j
10x^3y^2z \div 2x^5y^9
k
2^{15} \div 2^{ - 5 }
l
\dfrac{9 x^{3}}{3 x^{ - 4 }}
m
\left(\dfrac{x^{2}}{y^{4}}\right)^{ - 1 }
n
\left(\dfrac{a^{3}}{b^{3}}\right)^{ - 5 }
o
\left( \dfrac{4}{5} u^{ - 3 }\right)^{4}
p
\dfrac{5 p^{5} q^{ - 4 }}{40 p^{5} q^{6}}
q
\dfrac{b^{3} \div b^{ - 7 }}{\left(b^{ - 4 }\right)^{ - 4 }}
r
\left(\dfrac{m^{7}}{m^{ - 10 }}\right)^{2} \times \left(\dfrac{m^{5}}{m^{2}}\right)^{ - 3 }
s
\dfrac{\left(m^{ - 3 }\right)^{ - 1 } \times \left(m^{4}\right)^{ - 3 }}{m^{3} \times m^{4}}
t
\dfrac{a^{2} \times a^{ - 5 } \times b^{ - 2 }}{\left( a \times a^{ - 5 } \times b^{2}\right)^{2}}
17

Simplify the following, giving your answers with a negative index:

a
\dfrac{1}{6^{4}}
b
\dfrac{4}{n^{2}}
c
\dfrac{25 x^{5}}{5 x^{9}}
18

Express the fraction \dfrac{m}{n^{4}} as a product using negative indices.

19

Express the reciprocal of 8^{9} in:

a

Positive index form

b

Negative index form

20

State whether the following expressions are positive, negative or zero:

a
\left( - 3 \right)^{ - 2 }
b
- 3^{6}
c
\left( -3 \right)^{ 0 }
d
\left( -3 \right)^{ 5 }
21

If p > 0 and q < 0, which of the following statements is correct?

A

p^{ - 2 } < 0

B

- 2 q^3 < 0

C

q^{ - 2 } < 0

D

- \left(2 p\right)^2 < 0

22

Complete the statement below:

32^{ - 6 } = \left( 2^{2} \times \left(⬚\right)^{2}\right)^{ - 3 }

23

Simplify the following:

a
741^{0}
b

a^{0}

c
8x^0
d
\left(a^{0}\right)^{79}
e
\left( 7 m^{0} + 4\right)^{2}
f
5 \times 4^{ - 2 } + 9^{0}
g

\left( 2 \times 13\right)^{0}

h

\left( 13 x^{7}\right)^{0} + 13^{0} - 13 h^{0}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U1.AoS2.11

the exponent laws

U1.AoS2.2

substitution into, and manipulation of, these expressions

U1.AoS2.3

recognition of equivalent expressions and simplification of algebraic expressions involving different forms of polynomial and power functions, the use of distributive and exponent laws applied to these functions, and manipulation from one form of expression to an equivalent form

U1.AoS2.18

apply distributive and exponent laws to manipulate and simplify expressions involving polynomial and power function, by hand in simple cases

What is Mathspace

About Mathspace