Two matrices can be multiplied if the number of columns in the first matrix is equal to the number of rows in the second.
If matrix A has dimension m \times n and matrix B as dimension a\times b then the multiplication is defined (possible) if n=a and the dimension of the result C=AB will be m \times b. This is shown in the following diagram:
If the dimensions do not meet this criteria then we say that the matrix multiplication is undefined (not possible).
For example consider the following matrices A, B and C where A=\begin{bmatrix} a&b\\ c&d \end{bmatrix}, B=\begin{bmatrix} e\\ f \end{bmatrix}, C=\begin{bmatrix} g&h \end{bmatrix}
A is a 2\times 2 matrix, B is a 2\times 1 matrix and C is a 1\times 2 matrix.
A\times B is a (2\times 2)\times (2\times 1) this is defined and the result would be a 2\times 1 matrix.
B\times C is a (2\times 1)\times (1\times 2) this is defined and the result would be a 2\times 2 matrix.
A\times C is a (2\times 2)\times (1\times 2) this is undefined.
Unlike matrix addition and subtraction, matrix multiplication is not computed element by element.
Let's look at an example of multiplication before we generalise the result.
So 5\times 6+12\times 1+56\times 7=434 goes into the (1,1) entry: \begin{bmatrix} 5&12&56\\ 10&30&75\\ \end{bmatrix} \begin{bmatrix} 6&3\\ 1&2\\ 7&2 \end{bmatrix} = \begin{bmatrix} 434&.\\ .&. \end{bmatrix}
So, 5\times 3+12\times 2+56\times 2=151 goes into the (1,2) entry: \begin{bmatrix} 5&12&56\\ 10&30&75\\ \end{bmatrix} \begin{bmatrix} 6&3\\ 1&2\\ 7&2 \end{bmatrix} = \begin{bmatrix} 434&151\\ .&. \end{bmatrix}
So 10\times 6+30\times 1+75\times 7=615 goes into the (2,1) entry: \begin{bmatrix} 5&12&56\\ 10&30&75\\ \end{bmatrix} \begin{bmatrix} 6&3\\ 1&2\\ 7&2 \end{bmatrix} = \begin{bmatrix} 434&151\\ 615&. \end{bmatrix}
So 10\times 3+30\times 2+75\times 2=240 goes into the (2,2) entry. \begin{bmatrix} 5&12&56\\ 10&30&75\\ \end{bmatrix} \begin{bmatrix} 6&3\\ 1&2\\ 7&2 \end{bmatrix} = \begin{bmatrix} 434&151\\ 615&240 \end{bmatrix}
In general, to compute element (i,j) in the matrix AB, we multiply the elements of the ith row in A with the elements in the jth column of B, and sum all the products. For a pair of 2\times 2 matrices, this looks like this: \begin{bmatrix} a&b\\ c&d \end{bmatrix} \begin{bmatrix} e&f\\ g&h \end{bmatrix} =\begin{bmatrix} ae+bg&af+bh\\ ce+dg&cf+dh \end{bmatrix}
ConsiderA = \begin{bmatrix} -1 & -3 \\ -9 & -4 \\ 4 & -5 \end{bmatrix} and B = \begin{bmatrix} 3 \\ -8 \end{bmatrix}
Is the product AB defined?
What are the dimensions of AB?
Determine the matrix AB.
Frank owns two pizza stores, Panania Pizza and Penrith Pizza, at which he sells small pizzas for \$7, medium-sized pizzas for \$15 and large pizzas for \$28.
The table shows the number of pizzas sold at each store on a particular day.
Small | Medium | Large | |
---|---|---|---|
Panania Pizza | 21 | 25 | 12 |
Penrith Pizza | 26 | 11 | 22 |
Organise the prices into the column matrix in ascending size order.A= \begin{bmatrix} ⬚\\ ⬚\\ ⬚ \end{bmatrix}
Organise the number of pizzas sold into the matrix as given in the table.B= \begin{bmatrix} ⬚&⬚&⬚\\ ⬚&⬚& ⬚\\ \end{bmatrix}
Calculate Frank's total revenue for each store by finding BA.
If matrix A has dimension m \times n and matrix B as dimension a\times b then the result C=AB will have dimensions m \times b:
To compute element (i,j) in the matrix AB, we multiply the elements of the ith row in A with the elements in the jth column of B, and sum all the products. For a pair of 2\times 2 matrices, this looks like this: \begin{bmatrix} a&b\\ c&d \end{bmatrix} \begin{bmatrix} e&f\\ g&h \end{bmatrix} =\begin{bmatrix} ae+bg&af+bh\\ ce+dg&cf+dh \end{bmatrix}
The Identity matrix, I, has similar properties to the number 1 in the real number system. When multiplying a matrix by the identity matrix, I, of the appropriate order, the result is the original matrix. \begin{bmatrix} a&b\\ c&d \end{bmatrix} \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} = \begin{bmatrix} a&b\\ c&d \end{bmatrix}
The diagonal matrix, with 1's on the diagonal is the identity matrix. Use the symbol I, to represent the identity matrix. \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} = I
A special thing about the identity matrix is that the order of multiplication doesn't matter, i.e.
Let A= \begin{bmatrix} a&b\\ c&d \end{bmatrix} and let I= \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} then AI=IA=A.
Which matrix satisfies the following equation: A+⬚=A.
Find the matrix that satisfies the following equation: \begin{bmatrix} 6&1\\ 5&9 \end{bmatrix} \times \begin{bmatrix} ⬚&⬚\\ ⬚&⬚ \end{bmatrix} = \begin{bmatrix} 6&1\\ 5&9 \end{bmatrix}
The multiplicative identity for matrices is the Identity matrix I. For any matrix A,AI=IA=A