topic badge
AustraliaVIC
VCE 11 General 2023

6.03 Addition and subtraction of matrices

Lesson

Matrix addition and subtraction

When we add or subtract two matrices A and B, we add or subtract the corresponding elements. So we can only add or subtract matrices that have the same dimensions. In general, the sum and difference of two matrices can be represented similar to the following: \begin{bmatrix} a&b\\ c&d \end{bmatrix} + \begin{bmatrix} e&f\\ g&h \end{bmatrix} = \begin{bmatrix} a+e&b+f\\ c+g&d+h \end{bmatrix} and\begin{bmatrix} a&b\\ c&d \end{bmatrix} - \begin{bmatrix} e&f\\ g&h \end{bmatrix} = \begin{bmatrix} a-e&b-f\\ c-g&d-h \end{bmatrix}\\

As an example, the sum and difference of two matrices with numerical elements will look like the following: \begin{bmatrix} 3&7\\ 0&4 \end{bmatrix} + \begin{bmatrix} 1&2\\ 9&6 \end{bmatrix} = \begin{bmatrix} 4&9\\ 9&10 \end{bmatrix} and\begin{bmatrix} 2&-7\\ 3&0 \end{bmatrix} - \begin{bmatrix} -1&6\\ 0&4 \end{bmatrix} = \begin{bmatrix} 3&-13\\ 3&-4 \end{bmatrix}\\

Examples

Example 1

Consider the matrices: A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} and B = \begin{bmatrix} 3 & 4 & 5 \\ 2 & 1 & 9 \end{bmatrix}

a

Matrix A has dimensions ⬚ \times ⬚

Worked Solution
Create a strategy

Count the number of rows and the number of columns of matrix A. Use the fact that the dimensions of the matrix can be represented as \text{rows} \times \text{columns}.

Apply the idea

Matrix A has dimensions 3\times 2.

b

Matrix B has dimensions ⬚ \times ⬚

Worked Solution
Create a strategy

Count the number of rows and the number of columns of matrix B. Use the fact that the dimensions of the matrix can be represented as \text{rows} \times \text{columns}.

Apply the idea

Matrix B has dimensions 2\times 3.

c

Is A+B possible?

A
Yes
B
No
Worked Solution
Create a strategy

Check if the dimensions are the same.

Apply the idea

Matrix A has dimensions 3\times 2, and matrix B has dimensions 2\times 3.

Since they have different dimensions we cannot add them. So A+B is not possible.

Example 2

If A = \begin{bmatrix} 7 \\ -7 \\ -5 \end{bmatrix} and B = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, find A+B.

Worked Solution
Create a strategy

Add the corresponding elements in each matrix.

Apply the idea

Since matrices A and B are 3\times 1 matrices A+B will also be a 3\times 1 matrix.

\displaystyle A+B\displaystyle =\displaystyle \begin{bmatrix} 7 \\ -7 \\ -5 \end{bmatrix}+\begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}Add matrices A and B
\displaystyle =\displaystyle \begin{bmatrix} 7+8 \\ -7+2 \\ -5+4 \end{bmatrix}Add corresponding elements
\displaystyle =\displaystyle \begin{bmatrix} 15 \\ -5 \\ -1 \end{bmatrix}Evaluate each element
Idea summary

We can add or subtract two matrices of the same dimensions by adding or subtracting the corresponding elements.

Outcomes

U1.AoS3.3

matrix arithmetic: the definition of addition, subtraction, multiplication by a scalar, multiplication, the power of a square matrix, and the conditions for their use

U1.AoS3.9

add and subtract matrices, multiply a matrix by a scalar or another matrix, and raise a matrix to a power

What is Mathspace

About Mathspace