We can use the properties to find unknown lengths in a quadrilateral. Recall the properties of quadrilaterals related to length are:
Parallelogram | Rectangle | Rhombus | Square | Trapezoid | Isosceles Trapezoid | |
---|---|---|---|---|---|---|
\text{All sides }\\\text{congruent} | \checkmark | \checkmark | ||||
\text{Opposite}\\\text{sides are}\\\text{congruent} | \checkmark | \checkmark | \checkmark | \checkmark | ||
\text{Opposite}\\\text{sides parallel} | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark \text{(one pair)} | \checkmark \text{(one pair)} |
\text{Diagonals}\\\text{bisect each}\\\text{other} | \checkmark | \checkmark | \checkmark | \checkmark | ||
\text{Diagonals are}\\\text{congruent} | \checkmark | \checkmark | \checkmark | |||
\text{Diagonals are}\\\text{perpendicular} | \checkmark | \checkmark |
Consider the rectangle ABCD below, where AC=16\text{ m} and AD=9\text{ m}.
Find BD.
Find BC.
Consider the rhombus ABCD given below.
Find AB.
Find the length of BD.
The properties of the side and diagonal lengths of quadrilaterals are:
One thing that all quadrilaterals have in common is that they can always be split down the middle to make two triangles. Since the sum of the angle measures in a triangle is 180 \degree, the angle sum of a quadrilateral is twice that: 360\degree.
We can see that illustrated in this diagram. The angles from each of the triangles form a straight angle, and together they form a full revolution.
This fact, along with the other properties of quadrilaterals, can be applied to solve for unknown measures in quadrilaterals.
Parallelogram | Rectangle | Rhombus | Square | Trapezoid | Isosceles Trapezoid | |
---|---|---|---|---|---|---|
\text{Opposite}\\\text{angles are}\\\text{congruent} | \checkmark | \checkmark | \checkmark | \checkmark | ||
\text{All angles are}\\\text{right angles} | \checkmark | \checkmark | ||||
\text{Diagonals}\\\text{bisect opposite}\\\text{angles} | \checkmark | \checkmark | ||||
\text{Base angles} \\ \text{are congruent} | \checkmark |
Solve for the value of x in the diagram below.
Consider the rhombus PQRS below.
What is the value of x?
Consider the rectangle ABCD below, find m\angle C.
The properties of angles of quadrilaterals are: